2021年4月12 星期一 00:28:34
当前位置: 金莎娱乐官网最全网站>>科学研究>>科研成果>>正文

Efficient iron plaque formation on tea (Camellia sinensis) roots contributes to acidic stress

点击数: 更新日期:2019-04-01

Title


Efficient iron plaque formation on tea (Camellia sinensis) roots contributes to acidic stress tolerance


Authors


Xianchen Zhang, Honghong Wu, Lingmu Chen, Yeyun Li, Xiaochun Wan*


Journal


Journal of Integrative Plant Biology


doi: 10.1111/jipb.12702


Abstract


Tea plants grow in acidic soil, but to date, their intrinsic mechanisms of acidic stress tolerance have not been elucidated. Here, we assessed the tea plant response to growth on NH4+ nutrient media having different pH and iron levels. When grown in standard NH4+
nutrient solution (iron insufficient, 0.35mgL-1 Fe2+), tea roots exhibited significantly lower nitrogen accumulation, plasma membrane H+-ATPase activity, and protein levels; net H+ efflux was lower at pH 4.0 and 5.0 than at pH 6.0. Addition of 30mg L-1 Fe2+ (iron sufficient, mimicking normal soil Fe2+ concentrations) to the NH4+ nutrient solution led to more efficient iron plaque formation on roots and increased root plasma membrane H+ -ATPase levels and activities at pH 4.0 and 5.0, compared to the pH 6.0 condition. Furthermore, plants grown at pH 4.0 and 5.0, with sufficient iron, exhibited significantly higher nitrogen accumulation than those grown at pH 6.0. Together, these results support the hypothesis that efficient iron plaque formation, on tea roots, is important for acidic stress tolerance. Furthermore, our findings establish that efficient iron plaque formation is linked to increased levels and activities of the tea root plasma membrane H+-ATPase, under low pH conditions.